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Abstract We present a discrete particle method to model
biological processes from the sub-cellular to the inter-cellular
level. Particles interact through a parametrized force field to
model cell mechanical properties, cytoskeleton remodeling,
growth and proliferation as well as signaling between cells.
We discuss the guiding design principles for the selection
of the force field and the validation of the particle model
using experimental data. The proposed method is integrated
into a multiscale particle framework for the simulation of
biological systems.

Keywords Cell mechanics · Subcellular element model ·
Cell growth · Cell migration · Cell signaling

1 Introduction

Developmental processes such as embryogenesis, organ for-
mation and tumor growth are orchestrated by multiscale
bio-mechanical and chemical phenomena. In tumor-induced
angiogenesis for instance, tip cell selection, sprout migra-
tion, proliferation of the stalk cells and the formation of
lumen emerge as a result of such coordinated cell interactions
[32,39]. The phenotypic behavior of individual cells is deter-
mined by their response to a collection of stimuli from the
surrounding environment, including mechanical and chemi-
cal signals provided by the extracellular matrix (ECM) and
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cells in their neighborhood. These processes can transform a
homogeneous cell population to a heterogeneous one where
individual cells interact in a coordinated way to give rise to
a larger, hierarchical structure.

In this work, we consider eukaryotic animal cells of mul-
ticellular organisms as in the human body [1]. A conceptual
sketch of a cell and its structural components is shown in
Fig. 1. The interior of the cell is filled by the cytoplasm, a gel-
like substance composed of 70–90 % water. Within the cyto-
plasm, the main structural components are the cell nucleus
which occupies roughly 6 % of the cell and the cytoskele-
ton. The cytoskeleton is a highly dynamic network of differ-
ent fibers (actin, intermediate filaments and microtubules).
It determines the cell’s shape and drives locomotion. The
cell membrane separates the cytoplasm from the surround-
ing environments and transmembrane receptors are used by
cells to react to external stimuli. Those stimuli include chem-
ical interactions with ligands, mechanical interactions with
neighboring cells via cell-cell adhesion and mechanical inter-
actions with the ECM via integrins. The ECM is the structure
that occupies the extracellular space between cells. It is com-
posed of a mixture of fibers (collagen, elastin and fibronectin)
embedded inside a hydrated, gel-like substance.

A variety of models have been proposed to model cells
and biological tissues. In Fig. 2 we classify the models
within two categories that aim to capture different length-
and time-scales and different levels of detail. Continuum
models ignore cell boundaries and consider larger regions
of cells. Those regions are either identified by density fields
like “number of cells per volume element” or by an interface
surrounding the region of cells. Reaction–diffusion systems
are commonly used to describe the evolution of a molecular
entity through space but they can also model multi-cellular
systems such as brain tumors [27,60]. Single phase [17] and
multiphase models [18,34] treat tissues as a fluid-like mater-
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Fig. 1 Conceptual sketch of a cell and its structural components: Black
nucleus, red fibers, dark blue, yellow/purple organelles, light blue mem-
brane, yellow/pink receptor, green/pink ligands. (Color figure online)

ial, while solid mechanics models [25,28,42,55] treat tissues
as an elastic solid governed by the corresponding continuum
mechanics equations.

Continuum models are well suited to capture the large-
scale dynamics in growing tissue at the millimeter to centime-
ter range. However, the approximation of cells by a contin-
uum density prohibits the exploration of single cell dynamic
that give rise to important biological processes such as polar-
ization, growth and adhesion. When cells are modeled at a
continuum level, a single cell does not exist. The emergence
of phenomena initiated by single cells, a result of mutation or
phenotypic activation, can therefore not be studied in these
models [31]. We wish to study such phenomena in computer
simulations and we employ a cell-based model that can rep-
resent individual cells subject to mechanical stresses, migra-
tion, proliferation, cell-cell and cell-substrate adhesion and
cell-cell mediated signaling.

In the field of cell-based modeling (see Fig. 2), we dis-
criminate between grid-based and lattice-free particle meth-
ods. Cellular Automata are structured grids where every grid
point represents a single cell [4,15]. In single particle models
each cell is represented by a particle which can freely move
in space [5,35,49]. Cell vertex models represent cells with
polygonal (2D) or polyhedral (3D) shapes which are evolved
by minimizing an energy potential [16,43]. They are valu-
able tools to study adhesion, surface tension and pressure
driven cell arrangement as they explicitly capture cell size
and shape, however, they are limited to represent polygonal
cell shapes in closely packed epithelial layers. Cellular potts
models (CPM) are derived from the Ising model of ferro-
magnetism [26] and have been used to study adhesion driven
sorting in cell layers and various other developmental and
pathological systems in biology [12,23]. In CPM, a cell is
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Fig. 2 Overview of cell-based and continuum models for biological
tissues. Detailed models can capture single cells and subcellular details.
Coarser models work with cell densities and collection of cells to reach
larger length- and time-scales

defined as a set of lattice sites which are updated according to
a Monte Carlo Metropolis algorithm to minimize an energy
potential. They are not not time-dependent and describe equi-
librium situations [5]. In the Immersed Boundary Cell Model
each cell is represented by an elastic body and the immersed
boundary method [50] is used to capture the interactions
between the cells and a surrounding, incompressible, viscous
fluid [53,54].

The methods presented in this paper belong to the lattice-
free methods and extend the subcellular element model
(SEM) [45,57]. In the SEM, cells are represented by an
agglomeration of computational particles whose interactions
are defined via short-range potentials. The potential function
[57] models the viscoelastic properties of the cytoskeleton of
isolated cells. Model parameters are non-dimensionalized to
scale with the number of particles per cell and the mechani-
cal stiffness and homotypic and heterotypic cell-cell adhesion
are tunable via the intra-cellular and inter-cellular potential
parameters respectively.
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We present extensions to this model to account for actin
polymerization based migration. We introduce a model for
cell growth and proliferation driven by the cell-cycle and
we propose extensions to model cell-cell mediated signaling
processes that can determine the cell phenotype. We refine
the structure of the cell to account for the explicit inclusion
of subcellular organelles such as the nucleus. The cell mem-
brane is explicitly traced to model membrane bound recep-
tor mediated signaling cascades and its mechanical distinct
properties from the cytoskeleton.

The proposed methods have been implemented in a stand-
alone, object-oriented C++ framework that features thread-
based parallelism. The implementation allows for modular
extensions and fast prototyping of the model and integrates
visualization capabilities for 2D simulations. Furthermore,
we present an integration of the model into the LAMMPS
framework [33,51], a highly optimized parallel C++ library
for the computation of particle interactions.

The article is structured as follows: First, we introduce the
SEM and specify our extensions of it. Section 3 describes our
implementation of the model. Applications of the model are
shown in Sect. 4, followed by a brief summary.

2 Model and methods

We model cells as a collection of interacting particles, distin-
guishing particles in the interior as well as on the membrane
of the cell. Intra- and intercellular interactions are modeled
through parametrized pairwise forces. The model presented
here is an extension based on the SEM [45,57]. The model
parameters of the extended SEM are summarized in Table 1.
We consider SEM simulations in two or three dimensions.

2.1 The subcellular element model (SEM)

The SEM represents a cell by a collection of particles, the
Subcellular elements (SCE), that interact via potential forces.
The SCEs can be seen as a coarse-grained representation of
a cell’s cytoskeleton. The Langevin equation of motion for
the particle at position yαi of SCE α of cell i is given by

mÿαi = ξαi
− ηẏαi + FC (yαi ) (1)

where ξαi
represents the thermal fluctuations and random

cross-linking, polymerization and depolymerization events
inside the cytoskeleton, η is the viscous drag coefficient and
FC (yαi ) are the pairwise forces on particle yαi .

The forces FC (yαi ) are derived from a modification of
the empirical Morse potential, which has been used to model
soft breakable bonds in polymers [11,52]. The interaction
potential between two particles at distance r is given by

V (r) = u0 e
2ρ

(
1−r2/r2

eq

)
− 2 u0 e

ρ
(

1−r2/r2
eq

)
, (2)

Table 1 Model parameters of the extended SEM

Name Description

d dimensionality

Rcell cell radius

N number of particles per cell

pd sphere close packing density

ρ scaling factor

κ0 elasticity scaling coefficient

η0 viscous damping scaling coefficient

λ tuning coefficient for varying N

D diffusion coefficient for particles

α shifting parameter

Tp polymerization rate

R2d , R3d radius for neighbor detection

N th
int internal neighbor threshold

N th
ext external neighbor threshold

β th neighbor sector threshold

Rnuc nucleus radius

rmin minimal shifted radius

Rdens radius for local density measure

πp polarity threshold for polymerization

πdp polarity threshold for depolymerization

where u0 is the potential well depth, ρ is a scaling factor and
req is the equilibrium distance between two SCEs. The poten-
tial is repulsive for r < req to account for excluded volume
effects and attractive for r > req . To improve the computa-
tional performance of our implementation we define a cutoff
rc = 2.5req and set a constant V (r) = V (rc) for r > rc. We
distinguish a potential function for the pairwise interaction
between elements of the same cell (Vintra) and between parti-
cles of different cells (Vinter ) by potential parameters uintra

0
and uinter

0 respectively. The uintra
0 determines the interac-

tion strength of the particles that model the cytoskeleton,
whereas uinter

0 is associated with the binding strength of
receptor proteins that regulate cell-cell adhesion. Usually,
we choose uintra

0 > uinter
0 . The pairwise forces FC (yαi ) are

then computed as

FC (yαi ) = −∇αi

∑
βi �=αi

Vintra(|yαi − yβi |)

−∇αi

∑
j �=i

∑
β j

Vinter (|yαi − yβ j |). (3)

The noise term ξαi
is a vector of random variables ξm

αi
(m =

1, 2 for 2D, m = 1, 2, 3 for 3D) with mean zero and corre-
lation

〈ξm
αi

(t), ξn
β j

(t ′)〉 = 2Dη2δi, jδαi ,β j δm,nδ(t − t ′), (4)
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where D is the diffusion coefficient of the SCE, m and n are
the vector components and δ denotes the Kronecker or Dirac
delta function.

The cytoplasmic environment inside a cell is highly
viscous. We can therefore assume over-damped motion
(mÿαi � ηẏαi ) [45], set mÿαi = 0 and cast Eq. (1) into
the framework of Brownian Dynamics

ηẏαi = ξαi
+ FC (yαi ). (5)

The parameters for the model are computed given the
radius Rcell of a reference cell, the number of SCE per cell
N , the stiffness κ0 and the viscosity η0 as

req = 2Rcell(pd/N )1/3, η = η0/N ,

κ = κ0 N−1/3
(

1 − λN−1/3
)

, u0 = κr2
eq/(8ρ2),

(6)

where pd is the sphere close packing density and λ = 0.75
is a tuning coefficient for varying N [57]. We set pd =
π/(2

√
3) ≈ 0.91 for 2D and pd = π/(3

√
2) ≈ 0.74 for

3D simulations. We choose the stiffness κ0 in the order of
10−3–10−2 N m−1 and the viscosity η0 in the order of
10−3–10−2 N s m−1 [57]. Those values are derived from
experimental measurements of the rheology of living cells
[8,14,38,62]. Sandersius et al. [57] conducted simulations
to measure the viscoelastic properties of single cells subject
to axial compression and stretching, showing good qualita-
tive agreement with the experiments.

2.2 SEM++

The extensions of the proposed model include a modification
of the potential function to increase adhesion between SCE,
the polarization of cells, the smooth insertion and removal
of SCE to model polymerization and depolymerization, the
detection of cell membrane elements and a special SCE for
the cell nucleus. These extensions are detailed below.

2.2.1 Potential functions

The potential function introduced in [57] (Eq. (2)) has been
generalized here to allow for a dynamic shifting of the
strength distributions of adhesion versus repulsion. The mod-
ified potential function is given by

Vm(r) = u0 e
2ρ

(
1−r̃(r)2/r2

eq

)
− α u0 e

ρ
(

1−r̃(r)2/r2
eq

)
. (7)

The potential parameters are the depth of the potential well
u0, the equilibrium distance req = req(α), the shifting para-
meter α and a scaling factor ρ. The specific case of α = 2
recasts this potential into its original form (Eq. (2)). The mag-
nitude of the force interacting in between different SCEs is
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Fig. 3 Potential force in 1D for different values of the shifting parame-
ter α = 1, 2, 3, 4, 5, 6, where the highest repulsive potential is realized
with α = 1 and the highest attractive potential for α = 6. The remaining
parameter values are set to ρ = 2 and u0 = 1

then given by

Fm(r) = −δr Vm(r) = 2r̃(r)ρu0

r2
eq

(
2 e

2ρ
(

1−r̃(r)2/r2
eq

)

−α e
ρ
(

1−r̃(r)2/r2
eq

))
(8)

with the scaling function

r̃(r) = r
√

1 − log(2/α)/ρ (9)

to enforce F(req) = 0.
The potential interaction defined above applies for both

elements of the same cell (intra-cellular potential) and ele-
ments of different cells (inter-cellular potential). However,
inter- and intra-cellular interactions are given by a different
set of model parameters determining the interaction strength.
The scaled profile of this modified force function for a set of
different α values is depicted in Fig. 3.

2.2.2 Polarization

Polarity, the cells internal notion of direction, is induced by
chemical and/or mechanical stimuli. In the context of this
model, we do not consider any chemoattractant guiding cell
motion. For migrating cells, we either directly assign a polar-
ity vector to impose the direction of cell migration or we take
the assumption that cell polarity is an observable property of
the cell prescribed by its shape or elongation.

Here, cell elongation is approximated by fitting an ellipse
to the cell shape and extracting its major (Amaj ) and minor
(Amin) axes (see Fig. 4). The cell elongation can serve as
a basis for polarity estimation. Cell polarity for cell i is
then imposed by the direction of the major axis: pi =
Amaj/|Amaj | . Given a polarity vector pi per cell, we can
further define the polar distance pαi of SCE αi as the dot
product of its distance from the cell center yi and the polar-
ization direction
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Fig. 4 Extracting cell polarity via the cell shape. Purple ellipse fitted
to the cell shape with minor axis Amin and major axis Amaj defining
two possible polarization directions p and p̂

pαi = (yαi − yi ) · pi . (10)

2.2.3 Polymerization and depolymerization

Active, autonomous cell shape alteration and cell migra-
tion is the result of the assembly and disassembly of the
cytoskeleton network via polymerization and depolymeriza-
tion of actin filaments and microtubules. Although random
polymerization events are accounted for in the noise term ξαi

of Eq. (5), this model does not qualify to capture the active
dynamics of cytoskeleton remodeling in response to external
stimuli.

We propose to model the building up and breaking down
of the cytoskeleton via the explicit insertion and deletion of
SCEs. In order to achieve a seamless, smooth and location
independent insertion and removal of the selected elements
for polymerization and depolymerization, we propose the
introduction of a polymerization factor ϕαi associated with
each element. We define the time-interval for a polymeriza-
tion event to occur as Tp.

The polymerization factor is defined by

ϕαi (t) =
{

t/Tp, t ≤ Tp,

1, t > Tp,
(11)

where t denotes the time starting from the instant the
element is inserted. For depolymerizing elements we use
1 − ϕαi (t). For the interaction of element αi with β j , we
consider two types of pairwise interactions Fp1(r, ϕ) and
Fp2(r, ϕ) for polymerization and depolymerization respec-
tively. Additionally, to the distance between the particles
r = |yαi − yβi |, we compute the polymerization interac-
tion factor ϕ = ϕαi ϕβ j . The factor ϕ scales the equilibration
radius and for polymerization we cast Eq. (8) into the fol-
lowing form:

Fp1(r, ϕ) = 2r̃(r)ρu0

r2
eq

(
2E(r, ϕ)2 − αE(r, ϕ)

)
(12)
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Fig. 5 Interaction force for different polarization coefficients ϕ. Left:
Force for introducing an SCE as defined in Eq. (12). Right: Force for
extracting an SCE as defined in Eq. (14). Curves are shown for values
of ϕ = 1(purple), 0.9, .., 0.1(green). (Color figure online)

with

E(r, ϕ) =
⎧⎨
⎩

e
ρ
(

1−r̃(r)2/(ϕreq)
2
)
, ϕ > 0,

0, ϕ = 0.
(13)

During depolymerization on the other hand, we wish to pull
the surrounding SCEs towards the depolymerizing element.
To this end, we modify Eq. (12) to amplify the adhesive part
of the pairwise force as follows:

Fp2(r, ϕ) = 2r̃(r)ρu0

r2
eq

(
2E(r, ϕ)2

− (α + 8 (1 − ϕ)) E(r, ϕ)
)
. (14)

Examples of the resulting force curves for varying values of
ϕ are shown in Fig. 5.

2.2.4 Cell membrane

We define the membrane of a cell to be represented by the out-
ermost layer of SCEs enclosing all other SCEs of one cell. In
order to detect the SCEs constituting the cell membrane, we
introduce the membrane detection algorithms outlined below.
In the proposed model, membrane particles are not explicitly
and a priori tagged with this property but are instead identi-
fied by their SCE position within the cell. Living cells can be
stretched or elongated to assume a membrane surface area
six times its normal size. To account for this, in the proposed
model, SCEs are integrated or removed from the membrane
in a dynamic way, allowing the cell to change its surface area
in response to stretching and compression. Mechanisms to
limit the maximal membrane area by enforcing a membrane
stiffness with respect to the cell surface area are subject of
current investigations. Depending on the dimensionality of
the model, we propose two different membrane detection
algorithms for robustness and computational efficiency.

Membrane detection in 2D models For every SCE, we con-
sider the elements of the same cell in its neighborhood defined

123



216 Comp. Part. Mech. (2014) 1:211–227

A B

Fig. 6 Conceptual sketch of the membrane detection algorithm in 2D.
a Dark elements denote the SCEs constituting the cell membrane, light
elements are internal SCEs. b Neighbor elements of the SCE under
consideration (dark element) are detected within a circle of radius R2d .
βmax denotes the largest angular sector defined by the SCEs in the
neighborhood of the SCE under consideration

by a circle of size R2d . The neighborhood is then divided
into angular sections defining the space between consecutive
neighboring elements and the SCE under consideration. If
the angle βmax defining the largest of these sections exceeds
a predefined threshold value β th , the element is considered
part of the cell’s membrane. The membrane elements of cell
i are hereafter denoted by the subset αm

i . We note that the
algorithm works for both isolated and interacting cells. Fur-
thermore, by taking the bisector of βmax , we get an estimate
for the surface normal n at the membrane element under con-
sideration. A conceptual sketch of the membrane detection
mechanism in 2D models is depicted in Fig. 6.

Membrane detection in 3D models For every SCE, we count
the elements in its neighborhood defined by a sphere of radius
R3d belonging to the same cell (Nint ) and to other cells
(Next ). For membrane elements, we expect to find a lower
number of neighbor elements of the same cell (Nint ). In the
case of touching cells, we can identify membrane elements
additionally by a high number of neighbor elements of a
different cell. We set the threshold values for internal and
external neighbor counts that determine membrane elements
to N th

int and N th
ext . We note that in an equilibrated setting, the

internal neighbor count would be sufficient to identify the
membrane elements. However, in the presence of a dynamic
system where elements are introduced and removed locally,
a threshold for external elements greatly improves the stabil-
ity of the algorithm. A conceptual sketch of the membrane
detection mechanism in 3D models is depicted in Fig. 7.

2.2.5 Nucleus

The nucleus makes up around 5–10 % of a typical mam-
malian cell’s volume. Enclosed by the nuclear envelope, the
nucleus is a compact structure isolated from the remain-

A B

Fig. 7 Conceptual sketch of the membrane detection algorithm in 3D.
a Thick outlined elements denote the SCEs constituting the cell mem-
brane, light outlined elements are internal SCEs. b Neighbor elements
(star) of the SCE under consideration (thick outline) are detected within
a circle of radius R3d . Nint and Next , the number of neighboring ele-
ments belonging to the same cell (dark gray) and to another cell (light
gray) are given for this example. (Color figure online)

ing cytoplasm. It has been observed experimentally that the
nucleus behaves as a viscoelastic material similar to the cyto-
plasm, but with a 3–4 times increased stiffness and a viscos-
ity of almost twice the magnitude measured in the cytoplasm
[24]. Based on these differences in material properties and
the size, we model the nucleus independently from the rest
of the cell. Here, we approximate the ellipsoidal shape of the
nucleus by a spherical nuclear element (NE) of radius Rnuc.
As the choice of the specific interaction potential for the NE
is empirical, in order to minimize the number of parameters,
we maintain the same shape function and local support as
introduced for the SCEs. We introduce a shifted version of
the potential presented in Eq. (12) to account for the increased
radius of the nucleus element. The resulting force is given as

Fnuc(r, ϕ) = Fp1(n(r), ϕ) (15)

with n(r) = max(r − ns f t , rmin) and ns f t = Rnuc − req .
We note that the potential function is saturated inside Rnuc at
Fp1(rmin, ϕ). In practice, we do not expect any SCEs to be
located inside Rnuc. The nucleus potential can be faded in and
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Fig. 8 Interaction force of nucleus particle for different coefficients ϕ.
Dashed lines represent the normal SCE potential force (Eq. (12)), solid
lines represent the shifted nucleus potential force (Eq. (15)). Curves
are shown for values of ϕ = 1(purple), 0.7, 0.4(green). (Color figure
online)
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out depending on parameter ϕ. This feature is used during
cell proliferation to model nucleus disassembly and the seg-
regation of chromosome material into two daughter nuclei
during the M-phase (§4.3). The scaled profile of this force
function for a set of different values of ϕ is depicted in Fig. 8.

3 Implementation

The proposed methods have been implemented inside a C++
framework developed at the CSE Lab. The code explores
object-oriented programming and thread level based paral-
lelism of Intel’s TBB library. The object-oriented implemen-
tation allows for modular development and supports the adap-
tation and extension of existing methods. New concepts can
easily be integrated and existing modules can be combined to
assemble complex models. The flexibility of this framework
is of key importance in developing novel methods and algo-
rithms for cell-based models where the method of choice to
model a certain phenomena is highly ambiguous. Often, the
choice of one specific model over another is the result of an
extensive validation and optimization process during which a
number of implementations need to coexist.The framework
integrates a GLUT based visualization engine that allows
for direct visual feedback during development.The thread-
based parallelism of the framework allows for efficient com-
putations on multi-core architectures. However, it does not
explore multi-processor parallelism or GPU based acceler-
ation. Furthermore, the methods have not been subjected to
extensive performance optimization.

To address this issue, we started to implement the core
features of the extended SEM inside the LAMMPS frame-
work [33,51], a highly optimized parallel C++ library to
conduct particle simulations in the field of MD on multi-
node, multi-GPU clusters. In this way, limitations associ-
ated with the computational costs of individual-based models
are addressed inside a highly efficient and thoroughly tested
modeling framework for particle simulations that enables a
boost in the modeled system size at almost no developmen-
tal cost. We evaluated a number of existing libraries used
mainly for MD simulations including NAMD [44], Amber
[3] and DESMOND [13]. Although performance is the main
reason for integrating the SEM within these frameworks, the
software needs to offer a set of key features to allow for this
integration. Most MD frameworks are designed to be used at
an interface level where the user provides scripts that drive the
simulations. LAMMPS can in addition be used as a library, is
very well documented and encourages the integration of new
models directly inside the source code. An extension to the
source code, especially the memory management, is essential
to the integration of the SEM. Classic MD simulations usu-
ally keep the number of atoms (particles) fixed throughout
the simulation, as they model a closed system. Simulating

growth and death, however, demands the seamless insertion
and deletion of elements in an efficient way. Of the different
MD software we evaluated using these criteria, our results
supported the selection of the LAMMPS framework as our
platform of choice.

4 Applications

4.1 Cell stretching

We performed simulations of creep response for single cells
placed between two plates, modeling a related experimen-
tal study [14,38]. In an in vitro experiment, a single cell
is placed between two parallel, adhesive plates, one fixed
and one movable in normal direction to the plate. A force
is applied to the flexible plate and the strain of the cell is
measured over time. In a computational setting, we initialize
a cell between two adhesive walls (Lennard–Jones 9/3 wall
potential) by continuously adding new SCEs at the center
of the cell and then equilibrate the cell at its final size. This
procedure initializes a quasi-random cell shape in a confined
space between two plates (see Fig. 9). To exclude any far
field effects of the wall potentials during cell stretching, we
remove the walls and instead constrain the motion of the top
and bottom layer of cells. The top layer is moved as a result
of applying a stress σ on the top wall while the bottom layer
is kept fixed. In order to keep all wall particles in the same
plane, the force applied on each top wall particle is calculated
as f = f̂ +σπr2

eq , where f̂ is the average pairwise interaction
force over all top layer elements. The simulation parame-
ters are: Rcell = 10 µm, κ0 = 5.0 × 10−3 N m−1, η0 =
5.0 × 10−3 N s m−1, ρ = 2 and α = 2.

Cells are grown for 200 s and relaxed for another 100 s
before the walls are removed. After removing the walls and
assigning the wall layer particles, the system is relaxed for
another 4 s. We perform creep response tests on the equili-
brated system for applied stresses σ of 6.59 Pa, 8.66 Pa,
11.40 Pa, 15.00 Pa, 19.75 Pa, 25.00 Pa and 30.00 Pa for
7 s. The first five values for σ correspond to simulation results
reported in [57]. In order to capture recovery after the stress,
we set σ = 0Pa for a period of 4 s after the stretching.

Fig. 9 Single cell growing between two fixed, adhesive plates. After
equilibration, the bottom layer of SCEs are fixed while a force f is
applied to the top row of SCEs. Bars at the top and bottom indicate the
location of the plates. The small spheres show the distinct SCEs
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Fig. 10 Comparison of simulations controlled by fixed diffusion coef-
ficient D (rough lines) and fixed temperature T (smooth lines) subject
to different applied stresses

Simulations of cells without a nucleus (see Fig. 10) are
compared to simulations of cells including a nucleus ele-
ment (see Fig. 11). We investigate cells with a nucleus of
a size equivalent to 5, 10 and 20 % of the cells volume.
To initialize the simulations including a nucleus, we remove
SCE elements at the center of mass corresponding to the
desired nucleus volume from the equilibrated cell holding
no nucleus. We then introduce a nucleus element at the cen-
ter of the cell and ramp up its polymerization parameter ϕ

over a time period of Tp = 100 s, followed by an additional
equilibration period of 10 s. The nucleus potential parame-
ters are set to the same values as for the SCE potential.
We compare the creep response for cells with N = 1, 000
and N = 8, 000 elements. The system was integrated with
Brownian Dynamics and Forward Euler time integration. The
time steps during growth were set to Δt = 1.0 × 10−3 s and
Δt = 2.5 × 10−4 s for N = 1, 000 and N = 8, 000 respec-
tively. During the creep response test, a 10 times smaller Δt

was used to ensure stability of the method. Additionally, we
assessed two ways to control the random fluctuations dur-
ing the creep response test: first with a constant diffusion
coefficient D = 1.6 × 10−13 m s−2 as reported in [57] and
then with D = kB T/η computed with a fixed temperature
of T = 298K. We observe that the simulation results for a
fixed diffusion coefficient D show more fluctuations in the
strain curve. Otherwise, the creep response curves for a fixed
temperature agree well with the results obtained for a big-
ger diffusion coefficient (Fig. 10). For large stresses, cells
can be observed to rupture or undergo plastic deformations
and are very sensitive to the level of discretization. We there-
fore consider to ignore the results obtained for stresses above
19.75 Pa.

Considering the simulation results in the absence and in
the presence of a nucleus of varying size, we observe a vis-
coelastic creep response in all scenarios. In the presence of a
large nucleus element, we observe a reduction in the observed
deformation response. However, we find qualitative differ-
ences in the simulations corresponding to N = 1, 000 SCEs
and N = 8, 000 SCEs (Fig. 11). Whereas the deformation is
monotonically decreasing in the case where N = 8, 000, for
N = 1, 000, we observe an increase in the observed defor-
mation for a nucleus of 5 % volume before the deformation
decreases for larger nuclei with respect to the reference case
without a nucleus.

Sandersius and Newman introduced scaling formulas for
the potential parameters and results are presented for cells
composed of up to 1,000 elements [57]. Already in their
work, the variations in the creep response was reported to
increase with the number of elements per cell [57]. The large
discrepancies in the simulation results obtained for cells with
N = 1, 000 and N = 8, 000 elements suggest that the model
parameter scalings for cells composed of even higher num-
bers of SCEs are not very accurate.

In conclusion, these results suggest that inhomogeneities
in the cytoplasm of the cell, as induced by a large organelle
such as the nucleus, could have an important effect on the

Fig. 11 Influence of nucleus
size on the creep response under
different applied stresses. a
N = 1, 000 SCEs in reference
cell without a nucleus. b
N = 8, 000 SCEs in reference
cell without a nucleus
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Fig. 12 Left to right: SEM simulation of cell migration via polymer-
ization and depolymerization of the actin fiber network. Colors indicate
polarization direction (pink front, green back). The membrane elements

are marked by a black outline. The polymerization vector in this sim-
ulation is subject to random fluctuations (the image was adapted from
[31]). (Color figure online)

viscoelastic properties of the cell. We note, however, that the
presence of a nucleus element does not change the response
curve qualitatively. This effect could possibly be accounted
for by adjusting the potential parameters. In the light of the
presented results, the effect of a nucleus element on the creep
response of cells under stress and the scaling behavior of the
Subcellular Element Model for large numbers of elements
per cell needs to be further investigated.

4.2 Cytoskeleton remodeling

Cytoskeleton remodeling in response to external mechanical
and chemotactic stimuli can lead to alterations in the cell
shape, structural reinforcement and migration, depending
on the coordinating mechanisms that dictate the location of
polymerization events. With the machinery for polymeriza-
tion and depolymerization of distinct SCEs in place, we pro-
pose two different models for polymerization. We first intro-
duce a polarity driven polymerization method that leads to
directed cell migration. Secondly, we propose a density aware
model for polymerization to account for the cell response to
mechanical stimuli as a result of internal and external com-
pression. We introduce the notion of a cytoskeleton density
dαi at each element to be defined as the number of SCEs β j

inside a defined neighborhood of radius Rdens . The density
is further refined into the internal density dint

αi
, only consid-

ering neighborhood elements of the same cell (i = j) and
the external density dext

αi
, only considering the neighborhood

elements of different cells (i �= j).

Cell Migration (Polarity aware Polymerization) Cells can be
observed to hold a persistence of direction in their migrative
behavior [19]. In mesenchymal cell migration, the persis-
tence of direction is a result of the polarization of the cell reg-
ulating the assembly and destruction of the actin cytoskele-
ton, in combination with orchestrated binding and unbinding
of adhesion molecules of the cell membrane to the ECM.
In the current model, focal adhesion sites are not explicitly
modeled. In the 3D model, substrate adhesion is accounted

for by introducing a wall potential force. Here, we employ a
(9,3) LJ potential

Vw (r) = 3
√

3ε

[(σ

r

)9 −
(σ

r

)3
]

, (16)

with ε being the well depth and σ the interaction length para-
meter. We determine the polarization distance pαi (Eq. (10))
of each element within cell i and fit a normal distribution to
the polarization distances (N (μi , σ

2
i )). From this distribu-

tion, we determine a threshold polarization (Πp) and depo-
larization (Πdp) distance at the front and end of the cell as

Πdp = μi − πdpσi ,

Πp = μi + πpσi ,
(17)

and randomly pick one element with pαi ≥ Πp and one
element with pαi ≤ Πdp for polymerization and depoly-
merization respectively. Polymerizing elements are inserted
at the exact location of the identified element by the proce-
dure proposed above. The smooth introduction of the element
guarantees stability of this approach. In short, the proposed
method suggests to remove an element at the cell’s trailing
edge and introduce it at the leading front whilst keeping the
cell’s integrity. Transport of depolymerized actin is not mod-
eled implicitly, however, a balance between polymerized and
depolymerized fibers is enforced as the events are coupled.

We present simulation results for single migrating cells in
an in vitro environment in (Fig. 12, 2D) and (Fig. 13, 3D).
Cell migration in the Subcellular Element Model has been
considered before where cells are represented by single ele-
ments (N = 1) [46]. In this scenario, cell migration is real-
ized by an advection velocity on the cell particle. Sandersius
et al. [58,59] have motivated coordinated polymerization as
a driving mechanism in cell migration that resemble closely
the model presented in this work.

Cell Reinforcement (Density aware Polymerization) Cells
have been shown to react to external stimuli by mechanotaxis
and cytoskeleton remodeling [29]. They do so in response to
mechanical cues propagated by their environment, the extra-
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Fig. 13 3D simulation of cell migration in the SEM framework. Blue
cell shape evolution, red polymerizing and depolymerizing elements.
(Color figure online)

cellular matrix or migrating neighboring cells, in order to
reinforce the stress fibers where needed or to evade highly
populated tissue regions. We account for this behavior by
including a mechanism to sense the cytoskeleton density at
each element and coordinate the polymerization activity in
response.

We investigate a number of different strategies to drive
polymerization in response to pressure, including the loca-
tion (at the membrane, internal, both), and the direction (low
to high density, high to low density) of polymerization and
the metric for density (internal (dint

αi
), external (dext

αi
)). Only

two variations of these strategies show to be stable (maintain
cell connectivity) for three interacting cells and a variety of
parameters:

1 Only the internal density is considered and either all or
only the membrane elements are subject to polymeriza-
tion. Depolymerization happens at regions of low density
and polymerization at regions of high density. This leads
to a reinforcement of the cell in regions where it is com-
pressed. This behavior is consistent with observations of
cells reinforcing their actin network or basal lamina out-
side the cell in response to mechanical stress.

2 Only the external density is considered and only the cell
membrane elements are subject to polymerization. This
leads to a short migrative behavior of the cells to evade cell
contact. This mechanism could initiate the polarization of
the cell to migrate away from others.

In Fig. 14, we report simulation results of cell migration
subject to cell-cell adhesion. We observe one cell migrating
along its major elongation axis subject to cell-cell adhesion
forces exerted by a neighboring cell that is not migrating. For

the non-migrating cell, we investigate three different scenar-
ios: no active remodeling of the cytoskeleton (Fig. 14 a) and
the two scenarios outlined above (Fig. 14 b,c). We find that
with no active remodeling of the cytoskeleton in the non-
migrating cell, the two cells loose contact very quickly. In
contrast, if polymerization is active from low density to high
density regions as defined by the metric dαi , the cells remain
in close contact and a circling pattern of the migrating cell
around its neighboring cell can be observed. Such circling
patterns are commonly observed in real cells. In Fig. 14 d,
we show how two keratinocytes migrate on a collagen-coated
substrate. The growth factor FGF7 was added to some of the
cells to stimulate migration and the cells start circling around
each other due to cell-cell adhesion [37]. The experimental
images were provided by Michael Meyer from the Werner
lab at ETH Zürich (HPL, Otto-Stern-Weg 7, 8093 Zürich,
Switzerland).

From the simulations we observe that this behavior is very
sensitive to the density sensing mechanism. Removing the
external elements from the density estimation (dint

αi
) does

not lead to the same behavior. These observations suggest
that cytoskeleton remodeling plays a major role in cell-cell
interactions observed during migration and pattern forma-
tion. Not only the processes that drive polymerization in
the migrating cells but also the adhesion interactions and
polymerization dynamics in neighboring cells can strongly
influence and direct cell migration. It is therefore important
for future works to carefully calibrate such migration mod-
els with experimental data. Data from wound healing assays
[20,40] or the growth of blood vessels in the mouse retina
[41] could be used to fit parameters for the models and to
quantify their uncertainties [6].

We note that the active reinforcement of the cell’s
cytoskeleton has previously been addressed in the context
of tissue stretching and during migration in epithelial like
tissue sheets [59].

4.3 Growth and proliferation

The study of cellular growth and proliferation within the SEM
framework has previously been proposed by Alt et al. [2]. The
method suggests that at every time point, a subset of SCEs
located in the center of the cell is allowed to duplicate with
a small probability. For each duplicating element, a location
at a distance re from the element is selected. If the point is
sufficiently far away from all neighboring elements, the new
element is introduced at that location. Iterative equilibration
of the potential forces will integrate the new element into the
structure. Once a cell reaches an appropriate size, the cell is
divided by a plane through the center of mass, perpendicular
to the longest axis of the cell.

Here, we propose a refined model of cellular growth and
proliferation that shares some common features with the
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Fig. 14 2D simulation of one
migrating cell initially located to
the right (a: white, b&c: orange)
interacting with a second cell
via cell-cell adhesion compared
to experiments (d). The cell to
the left is quiescent (a: red) or
actively remodeling its
cytoskeleton form regions of
low to regions of high density as
defined by dαi (b: blue) or dint

αi
(c: blue). The last row shows an
experimental observation of two
living cells circling around each
other (d). (Color figure online)

method proposed in [2]. Having introduced a nucleus ele-
ment, we can use this particle to store additional information
about the cell, such as the cell cycle or its phenotype. We
define three internal states for a cell: quiescent, migrating
and proliferation. A cell undergoing proliferation can further
reside in four states of the cell cycle: quiescent (G0, gap 0),
growth (I, Interphase), nuclear division (M1, mitosis) and
cytoplasmic division (M2, cytokinesis). Transition from one
stage to the next are given by intervals TG0, TI , TM1 and
TM2 sampled from a normal distribution with defined mean
phase residence time μG0,I,M1,M2 and standard deviation
σG0,I,M1,M2.

G0 After a cell division has occurred, the two daughter cells
enter the quiescent state. The cells stay in the quiescent
state to equilibrate for the time period TG0 before the
cells transit to the growth phase.

I Cell growth is modeled via the duplication of SCEs at
regular intervals over the time period TI . The duplicat-
ing element is chosen at random and a new element is
inserted at the exact location of the duplicated element.
The polymerization factor is set to ϕαi = 0 and ramped
up to ϕαi = 1 over the time interval Tp = Ti/N . In
this way we ensure that the location of insertion does
not lead to any numerical instabilities and cell growth

proceeds in a smooth manner. Variations to the proposed
method to confine the region allowed for duplication to
the center of the cell can easily be implemented.

M1 When the cell has doubled in size, the cell cycle advances
to the M1 phase where the nucleus breaks up into chro-
mosomes which are divided to create two new nuclei.
The nucleus is broken up by setting its polymerization
factor ϕαi = 0 and a second nucleus is introduced at
the location of the original one. During the M1 and M2
phase, the nuclei elements take on the function of the
two poles of the mitotic spindle. Over the time period
TM1, the two nuclei polymerization factors are ramped
up. At the same time, the polymerization factor of the
SCEs in the dividing cell is slightly increased to model
swelling in size of the dividing cell [10]. Together, this
leads to the separation of the two nuclei and the aggre-
gation of SCEs around them. This way, the separation
axis of the two nuclei, and accordingly the elongation
of the cell is driven by the mechanical properties of the
surrounding tissue.

M2 After the two new nucleus elements have polymerized to
attain their final size, the cell is split by assigning every
SCE to the closest nucleus element inside the cell. The
method does not depend on the introduction of a splitting
plane and the orientation of cell division is driven by the
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Fig. 15 3D simulation of cell proliferation. SCE elements are dupli-
cated at regular time intervals until the number of SCEs per cell has
doubled. Before cell division, a second nucleus element is introduced
and cell division proceeds by assigning each SCE to its closest nucleus.
Growth progression: bottom left to top right. Blue cell membrane, red
nuclei. (Color figure online)

mechanical properties of the surrounding tissue. Over
the time period TM2, the two new cells are equilibrated
and the polymerization factor of the individual SCEs is
smoothly decreased back to unity, reverting the swelling
of the cell.

We would like to stress that in the context of cell prolifer-
ation, the polymerization factor is used to model phenomena
different than actin polymerization. The observed swelling of
cells during proliferation is not a result of increased polymer-
ization, but a result of an increase in the intracellular osmotic
pressure.

In the proposed simulation framework, the polymerization
factor acts as a scaling coefficient to the potential function
and thus can be used to model the swelling of the SCEs as
a result of osmotic swelling. Likewise, as mentioned above,
the nucleus elements take on the role of the mitotic spindle
in phases M1 and M2. A 3D simulation result of the prolif-
eration algorithm is shown in Fig. 15.

4.4 Juxtacrine signaling

Multicellular organisms depend on effective and robust com-
munication channels in order to coordinate collective behav-
ior during development, growth and pathology (e.g. tip cell
selection during angiogenesis). In time, a number of differ-

ent signaling channels have evolved to integrate mechanical,
chemical, even electrical information form close and dis-
tant locations. Here, we focus on the chemical signaling of
membrane bound ligand-receptor complexes acting between
neighboring, physically touching cells, referred to as jux-
tacrine signaling [36].

The mechanism has been studied in the context of spa-
tially heterogeneous pattern formation and gene expression.
Stochastic simulations of pattern forming reaction–diffusion
systems can be used to study the effect of noise at low mole-
cule numbers [7,9,21,22]. Here, we propose an implementa-
tion of juxtacrine signaling inside the extended SEM frame-
work and study the influence of added noise and intrinsic
noise as a result of the number of SCEs per cell.

Model of Juxtacrine Signaling The model studied here was
presented for homogeneous systems in [47] and serves as
a simple, generic model of juxtacrine signaling. The model
consists of three membrane bound molecular entities per cell
i : ligand ai , receptor fi and the bound ligand-receptor com-
plex bi . It describes the basic dynamics of reversible ligand-
receptor binding, internalization and production and decay
of ligand and receptor molecules as

∂ai

∂t
= −kaai 〈 f 〉i + kd〈b〉i − daai + Pa(bi ),

∂ fi

∂t
= −ka〈a〉i fi + kdbi − d f f + Pf (bi ),

∂bi

∂t
= ka〈a〉i f − kdbi − ki bi ,

(18)

where ka is the receptor-ligand binding association rate, kd

is the disassociation rate, ki is the internalization rate and da

and d f are the the decay rates for ligand ai and receptor fi

respectively.
In the original model, the notation 〈〉 indicates the average

concentration over the neighboring cells, accounting for the
fact that receptors of cell i can only bind to ligands of the
neighboring cells. The model implicitly assumes that ligand
and receptor concentrations are distributed homogeneously
on a cells’ membrane and that cells are arranged in a reg-
ular pattern, sharing an equal cell surface fraction with all
neighboring cells. In the framework of SEM, these assump-
tions do not hold, as cell shape and position are not regular
and fixed. We therefore define the operator 〈〉 as a weighted
sum, accounting for the membrane fraction shared with each
individual neighboring cells:

〈x〉i =
∑

n∈Ni

xn fn,i , (19)

where Ni is the set of neighboring cells of cell i and fn,i

is the fraction of the membrane area of cell n in contact
with cell i . Currently, this model assumes that ligands and
receptors are homogeneously distributed on the membrane.
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However, the model could easily be extended to account for
spatially heterogeneous distribution of molecules along the
cell membrane.

The model includes a feedback mechanism that links the
production rates of both the ligand ai and receptor fi to the
bound receptor-ligand complex bi . The feedback functions
Pa and Pf are monotonically increasing, saturating Hill func-
tions defined as

Pa(b) = Cm
1 bm

Cm
2 + bm

,

Pf (b) = C3 + Cn
4 bn

Cn
5 + bn

,

(20)

with parameters C1, . . . C5 and n. This model has been shown
to produce spatial heterogeneous patterns in 1D and 2D sys-
tems [48] and the wavelength of the established patterns has
been linked to the model parameters and the specific feedback
functions Pa and Pf [47,48,61]. The influence of intrinsic
noise arising from the stochastic treatment of the model and
extrinsic, added noise to the deterministic set of ODEs, has
been studied in [56]. They showed that this noise could have
an accelerating effect on the patterning process.

Pattern quantification In order to measure progression dur-
ing pattern formation, we define a metric that quantifies pat-
terning at a certain point in time during simulation. Here, a
pattern is characterized as a spatial inhomogeneity in some
chemical species. Hence, we define the patterning intensity
I that sums up the concentration differences over each cell
and its neighbors:

I =
√∑

i

(
bi − b̄i

)2
, (21)

where b̄i represents the average concentration of bi in neigh-
boring cells defined as

b̄i = 1

N
∑

n∈Ni

bn . (22)

Averaging weighted by the contact area with neighboring
cells did not alter the observations made below.

We focus on the concentration of receptor-ligand complex
b, as the complex induces the activation of a signaling path-
way that could lead to migration, changes in morphology and
gene expression. Note that the intensity I is not normalized
by the number of cells in the simulation and does not qualify
to compare systems of different size. We do not consider the
absolute magnitude of this function but are interested in its
temporal evolution to determine when a pattern has stabilized
(reached a constant value of I ). A constant patterning inten-
sity does not necessarily indicate a static pattern. Traveling
or alternating patterns could also reflect a constant value of
I .

SCE’s

membrane
interactions

cell ID

periodic
ghost cells

1 2 3 13

4 5 6 46

7 8 9 79

10 11 12 1012

2 3 11

10 11 1211

Fig. 16 Conceptual sketch of the simulation domain and boundary
conditions

Implementation details We determine the fraction of mem-
brane protein p of cell j that is presented to cell i as follows.
For each membrane element αm

i of cell i , we count the mem-
brane elements βm

j of neighboring cells inside an interaction
radius rm and store their number Nαm

i
on the membrane par-

ticle αm
i . We define the neighborhood of interacting elements

around αm
i as

Nαm
i

= {βm
j | (i �= j) ∧ (‖ yαm

i
− yβm

j
‖≤ rm)}. (23)

The amount of membrane bound protein p that neighboring
cells j presents to cell i is then calculated as

〈p〉i =
∑
αm

i

∑
βm

j ∈Nαm
i

Nβm
j∑

γ m
j

Nγ m
j

p j . (24)

Results All presented results are conducted in a periodic sim-
ulation domain containing 64 cells arranged in an eight by
eight grid (see Fig. 16). The parameter values are set as pro-
posed in [56]. All simulations are subject to the following
initial conditions: a = 477.5 mol, f = 1924.9 mol and
b = 198.7 mol, the steady state solution in the absence of
any noise.

In a first set of simulations, each cell is discretized with
only one SCE per cell. This removes any intrinsic noise in the
system that might result from spatial inhomogeneities in cell
contact areas of cells discretized with many elements. The
cell conformation corresponds to the situation of a 2D regular,
hexagonal grid. To initiate the pattern forming process, we
add a defined amount of uniform multiplicative noise (0.01,
5, 10 and 50 %) and study the pattern forming dynamics.

123



224 Comp. Part. Mech. (2014) 1:211–227

Fig. 17 Time evolution of the
intensity I averaged over 19
simulations for different initial
noise levels (0.01, 1, 5, 10 and
50 %). Cells are discretized with
one SCE per cell
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For each noise level, we ran 19 simulations and present the
patterning intensity I (see Fig. 17).

For all five investigated noise levels, we observe an ini-
tial steep increase of the intensity until a maximum level is
reached, followed by a drop to about 80 − 85% of the maxi-
mum. Thereafter, it rises again by ∼ 1% and stabilizes. The
steady state intensity represents the formation of a stable
pattern and is located around the same level for all simu-
lated noise levels, whereas the maximally attained intensity
is slightly lower in the presence of 50% noise as compared
to the other noise levels. However, a striking difference can
be seen in the transient phase during the beginning of the
simulations. Whereas the slope of the intensity is similar for
all simulated noise levels, they are shifted along the time
axis with the maximum appearing earlier for higher simu-
lated noise levels. This indicates that pattern formation in the
studied system is faster as the initial noise level is increased,
which is consistent with previous observations [56].

The observations above suggest that pattern formation in
juxtacrine signaling networks that feature a feedback mech-
anism are not only dependent on noise but converge faster
as the noise level increases. In multicellular tissues, intrinsic
noise is present in the form of local variations in membrane
bound protein expression and cell shape irregularity.

In the following, we want to investigate the influence of
intrinsic noise inside the Subcellular Element Model on the
pattern forming dynamics as a result of the number N of
SCEs per simulated cell. Moving from a one SCE per cell
discretization to many SCEs per cell will brake the regular-
ity of the neighbor contact areas and the cell positions and
therefore introduce intrinsic noise in the signaling model at
every simulated time step (not only at the beginning of the
simulation). Here, we investigate five discretization levels
with N = 10, 25, 50, 75 and 100. Cells are initialized in a

hexagonal grid configuration by placing all SCEs of a cell
randomly around the cells center of mass. Before the simu-
lation of the signaling network is started, SCE positions are
fixed upon equilibration and the signaling levels are reset to
the steady state initial conditions.

We report the evolution of the patterning intensity I for
a varying number of SCEs per cell in Fig. 18. We note
that the intrinsic noise in the system is sufficient to initiate
pattern formation in all five configurations and an intensity
plateau is reached after 800 min. Again, all intensity curves
show a steep initial increase until they reach a maximum
intensity. For 25 and more SCEs per cell, the maximum is
reached at around 400 min and the attained intensity max-
imum increases with the number of SCEs. After reaching
the maximum in I , the intensity level decreases to stabilize
at around 800 min. In contrast to the situation of one SCE
per cell and different noise levels, the intensity functions
for different numbers of SCEs do not collapse to the same
value.From the presented results we deduce that higher num-
bers of SCEs lead to a higher intensity plateau. We also note
that these steady state intensity levels are higher than what
was observed for the single SCE case. The situation for 10
SCEs is markedly different from the other configurations.
The characteristic peak in I is not present and the intensity
converges to a much higher value than what is observed for
the other cases.

For higher numbers of SCEs (>25) we conclude that the
intrinsic noise of the SEM and its variations due to cell res-
olution are different from what was observed for added ini-
tial noise simulations of single SCE cells. Cell resolution
does not affect the speed of pattern formation but influences
the observed intensity level. Comparing the time it takes to
reach the maximal intensity, the simulations with many SCEs
roughly correspond to the ones with a single SCE with 5 %
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Fig. 18 Time evolution of the
intensity I averaged for 4
simulations. Results are shown
for 5 different numbers of
sub-cellular elements per cell
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added noise. The differences in the intensity plateau level
could be a result of the intrinsic noise (a result of spatial con-
tact inhomogeneities) that is continuously influencing the
system as opposed to noise that is added at the beginning of
the simulation.

5 Summary and outlook

In this work, we presented SEM++, an extension to the Sub-
cellular Element Method [45,57] that explicitly considers
sub-cellular components such as the cell nucleus and the cell
membrane. We introduce modifications to the potential func-
tions of the Subcellular Elements that allow for polymeriza-
tion and depolymerization as observed during migration and
active cytoskeleton remodeling. SEM++ introduces a refined,
unsupervised proliferation mechanism, actin polymerization
driven cell migration and membrane protein mediated jux-
tacrine signaling.

SEM++ is implemented in an object-oriented, standalone
C++ framework that allows for fast prototyping and model
development. Furthermore, the methods have been integrated
into the LAMMPS framework [33,51] to benefit from its
highly efficient and parallel implementation for particle sim-
ulations.

The model is well suited to resolve shape, structure and
spatial interactions between cells. The computational ele-
ments inside the cell could further be used to model intra-
cellular transport and signaling pathways operating in dif-
ferent locations of the cell. To accurately account for the
extracellular milieu, the model needs to be extended or cou-
pled to a model that captures the interaction of the cells with
the surrounding ECM and can simulate signaling and trans-
port processes inside the ECM. Since the method relies on

discrete computational elements, it can readily be coupled to
multiscale particle methods which can be used resolve the
processes within the ECM [30].

Currently, the SEM does not consider directionality or
heterogeneity inside a cell. The cytoskeleton of a cell is by
no means a homogeneous network, as it is composed of ori-
ented and elongated fiber bundles that are cross-linked to
give the cell structure and shape. This could limit the appli-
cation of the SEM in scenarios where cells at equilibrium
assume an elongated shape, such as epithelial cells of the
connective tissue or neurons. The introduction of spatially
varying SCE potentials, elliptically shaped potential func-
tions or fixed bonds in-between SCEs could address these
limitations. Ongoing work focuses on the coupling of parti-
cle model with experimental data [20,40,41] and the quan-
tification of uncertainties in the force field following related
work of our group on Molecular Dynamics [6].
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