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Cognition encompasses a range of higher-order mental

processes, such as attention, working memory, and model-

based decision-making. These processes are thought to

involve the dynamic interaction of multiple central brain

regions. A mechanistic understanding of such computations

requires not only monitoring and manipulating specific neural

populations during behavior, but also knowing the connectivity

of the underlying circuitry. These goals are experimentally

challenging in mammals, but are feasible in numerically simpler

insect brains. In Drosophila melanogaster in particular, genetic

tools enable precisely targeted physiology and optogenetics in

actively behaving animals. In this article we discuss how these

advantages are increasingly being leveraged to study abstract

neural representations and sensorimotor computations that

may be relevant for cognition in both insects and mammals.
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Introduction
Insects use their relatively small brains to produce stunning

behavioral complexity. The full sophistication of their

actions is sometimes obscured by the rapidity with which

they unfold. In fact, whether it is dragonflies capturing prey

or flies escaping looming predators, there is mounting

behavioral evidence that insects rely on internal models

for their sensorimotor prowess [1�,2]. More generally, the

capacity for complex computation has been demonstrated

in behavioral and physiological studies across a wide range

of insects. Insects show signatures of selective visual

attention [3,4,5�], modulate their responses to sensory

stimuli based on context and past associations [6–8], and

bridge the gap between sensory processing and action

using working memory [9–11]. They acquire and use

navigational information [12] and some, like honeybees,

communicate that knowledge to conspecifics [13,14]. The
www.sciencedirect.com 
weight of such experimental evidence suggests that im-

portant aspects of cognition require neither a cortex nor a

large brain [15–17]. Here we focus primarily on recent

experimental studies in discussing how insects might

contribute to our understanding of internal representations

that provide a foundation for cognition.

Behavioral evidence for complex internal
representations in insects
Internal representations of relevant aspects of the external

world or of an animal’s own actions allow it to make

predictions and to select appropriate actions. Neural pro-

cessing that relies on such internal models is likely to

underlie dragonfly prey capture [1�], a behavior that typi-

cally unfolds over an interception flight lasting only a few

hundred milliseconds. High-speed video recordings of

their flight paths revealed that, rather than just reactively

following prey movements, dragonflies steer using a pre-

diction of prey trajectory that is likely based on their initial

observations of prey movement (Figure 1a, [1�]). Further,

their head movements precisely compensate for expected

changes in body orientation during flight maneuvers,

allowing them to maintain prey foveation throughout

the flight (Figure 1b). Thus, dragonflies may use visual

input of prey position during the flight only to make

corrections to an existing internal representation.

Internal representations that outlast the sensory cues that

produced them can also allow animals to orient towards

salient landmarks when they are temporarily obscured.

Such short-term orientation memory can be seen in

walking flies tracking visual landmarks. The flies appear

to store the angular position of a targeted landmark after

extended exposure to it and retrieve this information

when the landmark disappears [11].

The strongest behavioral evidence that insects must use

abstract internal representations comes from honeybees,

which display behaviors akin to deliberative decision-

making. Foraging honeybees can be trained to memorize

a pattern shown at the entrance of a Y-maze and to use

this cue to predict the location of food in the maze by

comparing it to two sample patterns shown at the maze’s

arms (Figure 1c, d and f, [10,18]). In this bee version of a

delayed-match-to-sample task, animals are able to learn

abstract association rules such as ‘sameness’ or ‘differ-

ence’ of the cue and sample pattern. This capacity for

flexibility, abstraction and generalization in learning indi-

cates a high degree of sophistication in the underlying

internal representations.
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Evidence for sophisticated internal representations from behavioral studies across insect species. Dragonfly (Plathemis lydia) prey interception

relies on internal models of prey movement and of the dragonfly’s own body mechanics (a–b). Honeybees (Apis mellifera) form conceptual

memories in a delayed-match-to-sample task (c–e). Homing desert ants (Cataglyphis fortis) navigate by flexibly combining path-integration and

visual landmarks (f–g). (a) A reconstructed flight trajectory of a dragonfly (orange) chasing a fruit fly (grey). The bottom schematic illustrates prey

foveation by the dragonfly. (b) In addition to following the prey, dragonflies actively align their body to the prey’s flight path and make predictive

head movements that cancel self-motion-induced drift of the prey-image on their retinae. (a–b) adapted with permission from [1]. (c) Honeybees

were trained in a Y-maze with a sugar reward randomly located in one of the two arms. A bee is presented with a visual cue at the maze entrance

and, after entering the maze, two samples at the end of each maze arm. (d) Over the course of 60 training trials, bees learn abstract rules such as

‘sameness’ to predict the location of food in the maze by comparing the cue to the two samples. (e) In a transfer test, bees trained with colors

apply the learned rule to patterns of vertical and horizontal stripes and vice versa to correctly predict food location in 70–80% of trials. (c–e)

adapted with permission from [18]. (f) Ants from a colony, whose entrance was marked by a black cylinder, were trained to collect food at a

feeder 15 m south of the nest and then return home along an approximately straight path. (g) Trained ants were studied for how they combined

path-integration and landmark guidance. They were captured at the feeder at the beginning of their homebound path, that is, with a path

integration vector pointing north towards their nest, and released in a distant test site. At the test site, a landmark (red circle) was either placed at

a location consistent with the training configuration at the expected location of the nest (orange square) or in a location where the landmark-based

guidance would conflict to varying degrees with the path-integration vector (blue circles). (f–g) adapted with permission from [23].

Current Opinion in Neurobiology 2016, 37:59–65 www.sciencedirect.com
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Of course, extrapolating directly from complex behavior

to complex internal representations can be dangerous [19].

Foraging desert ants, for example, display impressive

navigational skills, including memorizing long, stereotypic

foraging rotes, path integration and the ability to flexibly

combine route-guiding cues across different sensory mo-

dalities [20–23] (Figure 1f and g illustrate a combination of

path integration and landmark-based navigation). Howev-

er, this complex behavior may rely on simpler internal

representations of spatial information than those employed

by many mammals. Navigating desert ants may not form an

explicit representation of their environment in the form of

a cognitive map, but may instead rely on implicit knowl-

edge. This could be in the form of directions, such as a

homing vector [24], or as templates of visual scenes along

the path that can be used to compute and maximize

familiarity metrics [25]. Distinguishing higher-order inter-

nal representations from those with less flexibility can be

challenging, particularly when the only readout available is

behavior.

Neurophysiological strategies to probe
internal representations
Physiological recordings in immobilized animals have pro-

vided many examples of high-level internal representa-

tions in insects [26,27,28�] and revealed the existence of

synaptic plasticity that is likely used to associate high-level

sensory representations with appetitive or aversive experi-

ences [28�,29,30,31�]. However, a comprehensive assess-

ment of the nature of internal representations and their

potential role in cognitive processing requires that such

recordings be performed in actively behaving animals.

Understanding the neural basis of the remarkable naviga-

tional behavior of bees and ants, for example, may require

monitoring the activity of specific neural circuits in foraging

animals. Further development of extracellular recording

techniques in freely behaving large insects [32–35] may

eventually enable such experiments, although identifying

and targeting the relevant neurons remains a challenge. A

different physiological strategy, which has been the main-

stay of primate research for decades, is to record neural

activity during head-fixed behavior. Head-fixation con-

strains behavioral output, but allows for the sensory envi-

ronment to be carefully controlled. This strategy has been

employed in bees to study how olfactory representations

are affected by learning [36] and how visual-stimulus-

evoked local field potentials are modulated by behavioral

choices [3], and it has been applied in many other insects to

examine sensory representations in the context of orienting

[37–40]. Head-fixed recordings have also been used with

success to probe internal representations in a smaller insect

with a distinct set of technical advantages.

Studying internal representations in head-
fixed behaving Drosophila
In adult Drosophila, the development of head-fixed behav-

ioral paradigms has allowed the combination of powerful
www.sciencedirect.com 
genetic tools with whole-cell patch clamp recordings and

two-photon imaging with genetically encoded calcium

indicators [41,42]. The fly’s small brain size allows physio-

logical access to the entire central brain with a minimally

invasive preparation. Comprehensive anatomical and be-

havioral genetics studies [43,44�,45] help to target the

search for cellular correlates of specific internal representa-

tions. Repeatable access to these genetically identified cell

types permits precisely targeted perturbation and moni-

toring of neural activity during behavior. Overall, the

ability to reliably access the same sets of identified neurons

across trials and animals enables rigorous and mechanistic

circuit analysis.

A recent study [46�] investigated the cellular basis of the

suppression of optomotor reflexes — compensatory head

and body movements in response to wide-field optic

flow — during voluntary turns. Such selective suppres-

sion establishes a distinction between sensory signals

elicited by voluntary movements from those caused by

external influences. This can be achieved by efference

copy [47] and related corollary discharge mechanisms

[48], which filter sensory input by subtracting an inter-

nally generated prediction of the self-generated signal

from the observed signal, that is, by implementing a so-

called forward model. In the study [46�], optic-flow pro-

cessing neurons in the fly visual system were found to

receive turn-direction-specific feedback with the appro-

priate sign and latency to suppress self-generated sensory

input. The amplitude of the feedback signal scaled with

the visual drive, which depends not only on the turn

speed but also on the structure of the visual environment.

Investigations into how the flexible scaling of the motor-

related feedback signal is achieved should clarify the

level of sophistication of the underlying internal models.

Compelling direct evidence for an abstract internal re-

presentation comes from recent work on spatial orienta-

tion in walking flies [49�]. The work focused on the

computational role of neurons in the fly central complex,

a conserved brain region that has been implicated in

motor control, orientation and navigation behavior in

various insect species [27,50�,51,52]. In flies, the central

complex is required, among other tasks, for short-term

orientation memory ([11], Figure 2a) and visual learning

([53,12], Figure 2b). Simultaneously imaging a complete

population of genetically defined neurons in the central

complex (Figure 2c) while the fly was walking in either

darkness or in a simple visual virtual reality environment

[49�] revealed that flies possess an internal representation

of their angular orientation. This abstract internal repre-

sentation, which is stable across visual environments, is

updated by both self-motion signals, and, if available,

visual cues (Figure 2d). Interestingly, the representation

of the fly’s orientation persists even when the fly is

standing in place in darkness, that is, in the absence of

visual or motor information. A variety of theoretical
Current Opinion in Neurobiology 2016, 37:59–65
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Studying the circuit mechanisms underlying visually guided navigation in walking fruit flies (Drosophila melanogaster). (a) Walking flies can keep

the angular location of vertical landmarks in working memory. Flies have an innate attraction to prominent vertical stripes and readily track them.

In the so-called detour paradigm a fly is first presented with two stripes on opposite sites of an arena, which stimulates the fly to walk back and

forth between them (left panel). When the fly crosses the midline, both stripes disappear and a distractor stripe appears lateral to the fly (middle

panel), triggering a turn towards it. One second after the fly turns towards the distractor stripe, the latter also disappears (right panel). 80% of the

tested flies subsequently turned towards the location of the previously tracked, but now invisible, stripe suggesting that the fly stored its angular

position. Representative trajectories of two flies are shown. Adapted with permission from [11]. (b) Visual place learning in a Morris water maze-

like task for walking fruit flies. Over the course of 10 training trials, flies learn to use visual cues to quickly find the location of a small cool spot

(grey square) in an aversively hot arena. The upper row shows schematics of the arena with the location of the cool spot and the visual panorama.

Trajectories from four representative flies are shown in the bottom row. Figure adapted with permission from [12]. (c) Schematic of the fly brain

overlaid onto a frontal view of the fly head (top), and an enlarged view of the central complex (bottom). The fly central complex is composed of

four regions: the protocerebral bridge (PB), the fan-shaped body (FB), the ellipsoid body (EB), and the paired noduli (NO). (d) Calcium dynamics of

a single, genetically identified population of neurons whose dendrites segment the ellipsoid body (bottom, dashed green line outlines the EB).

Two-photon imaging was performed while the fly walked on a spherical treadmill in a visual virtual reality consisting of a multi-landmark panorama

(left) and in darkness (right). Rotations of the fly on the ball induce a corresponding update of the visual panorama and are accurately tracked by a

single localized calcium activity ‘bump’ in the ellipsoid body (illustrated by grey arrows in the second panel). This bump is also present and tracks

the fly’s rotational movements in the absence of visual cues. Adapted with permission from [49�].

Current Opinion in Neurobiology 2016, 37:59–65 www.sciencedirect.com
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models describing possible mechanisms for such angular

path integration have been proposed in the context of

vertebrate head direction cells [54]. These models make

specific predictions about the connectivity of underlying

circuits, but the scale of vertebrate brain circuits makes

them challenging to test. In the fly, electron-microscopy-

based reconstruction efforts should provide the circuit

connectivity information necessary to constrain such

models [55], and the ability to specifically monitor and

perturb the activity of complete populations of identified

neurons should enable powerful tests of their predictions.

Challenges and future directions
There is increasing evidence that insect brains rely on

some of the same internal representations that are

thought to underlie cognition in mammals [49�,54], but

challenges remain in definitively linking physiological

data to cognitive behavior. Mammals are usually trained

for several weeks before they perform cognitively de-

manding tasks in physiological settings. Insects have

shorter memories, a shorter lifespan, and only a few

can be chronically implanted with recording devices.

Thus, insect physiologists seldom have the luxury of

training protocols that last more than a few hours. Instead,

they typically rely on tasks that exploit or extend an

animal’s natural behavior, as for example described in

the experiments in Figures 1 and 2a,b. Although the

genetic tools in the fly make it an appealing system,

many other insects display a richer cognitive repertoire.

Mechanistic investigations of cognition in these species

will be greatly aided by the development of physiological

and genetic tools for these systems as well [56,57]. Final-

ly, the biophysics of insect neurons may be key to a

complete understanding of how internal representations

are created and used in insects. More information about

the expression and subcellular distribution of channels

and receptors [58], as well as the development of high

signal-to-noise voltage sensors that enable membrane

potential changes to be monitored in cell bodies and

processes [59,60], may pave the way forward.

Internal representations underlying mammalian cogni-

tion have been amongst the most evocative phenomenol-

ogy described in neuroscience [61]. A major challenge

with dissecting the mechanisms involved in generating

such representations is that they are often distributed

across large populations of neurons in brain regions far

from the periphery [62]. As discussed above, there is now

evidence that, in some of these cases, insect brains may

carry out similar computations [49�]. Essential features of

the implementation of specific neural computations can

generalize well beyond a single system. Studies in the

olfactory and visual systems, for example, have highlight-

ed similarities between insect and mammalian sensory

circuit function [63,64]. Although studies of cognitive

computations in insect brains are in their early stages,

these numerically simpler systems may provide a more
www.sciencedirect.com 
navigable path towards understanding some of the fun-

damental synaptic, cellular and circuit mechanisms un-

derlying cognition [17].
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